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Abstract

We propose identifying the drift and the diffusion functions of an
ergodic scalar stochastic differential equation using repeated eigen-
function estimation. The transition density will be estimated in a
new way involving Kolmogorov’s backward equation, neural networks
and functions of our choice. Martingale estimating functions will be
used to obtain asymptotic properties.
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1 Introduction

Interest has been focused on the identification of the drift and diffusion
functions of stationary stochastic differential equations. Emphasis has been
placed on the infinitesimal generator of the underlying process. The in-
finitesimal generator, as an operator on a Hilbert space has eigenvalues and
eigenfunctions which along with a nonparametric estimator of the stationary
density, can be used to find the local variance function. In this paper, fol-
lowing a review of the framework presented in the seminal article by Hansen
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and Scheinkman (1995), we will propose an extension of these techniques.
We will consider repeated eigenfunction estimation as an alternative.

We have the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt (1)

where µ(Xt) is the drift and σ(Xt) is the diffusion. Let φ(Xt) be a twice
continuously differentiable function with E[φ(Xt)] = 0 and E[φ2(Xt)] < ∞
where the expected values are taken with respect to the stationary distribu-
tion q(Xt) of Xt.

Let

Aφ = limt→0
E[φ(Xt)]X0]− φ(X0)

t

be the infinitesimal generator of the process Xt. The infinitesimal generator
satisfies Kolmogorov’s backward equation:

∂φ(t, x)

∂t
= µ(x)

∂φ(t, x)

∂x
+

1

2
σ2(x)

∂2φ(t, x)

∂x2
. (2)

This partial differential equation can be solved using separation of vari-
ables.

Let φ(t, x) = φ(x)ψ(t).

ψ′(t)φ(x) = µψ(t)φ′(x) +
1

2
σ2(x)φ′′(x)ψ(t)

i.e.
ψ′(t)

ψ(t)
=
µφ′(x)

φ(x)
+

1

2φ(x)
σ2(x)φ′′(x).

Since the left hand side is a function of t and the right hand side is a function
of x these side are equal to a constant λ. So

ψ′(t)

ψ(t)
= λ

and
µφ′(x)

φ(x)
+

1

2φ(x)
σ2(x)φ′′(x) = λ.

We have
ψ = exp(λt)
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and

µ(x)
∂φ(x)

∂x
+

1

2
σ2(x)

∂2φ(x)

∂x2
= λφ(x).

So that
φ(t, x) = exp(λt)φ(x).

On the other hand we know that the solution of Kolmogorov’s backward
equation is given by

φ(t, x) = E[φ(Xt)|X0 = x].

So that we have
E[φ(Xt)|X0 = x] = exp(λt)φ(x).

Obviously
E[φ(Xt+s)|Xt] = exp(λs)φ(Xt). (3)

Kessler and Sorensen (1996) were the first to use this relation to identify
eigenfunctions. In section 3, we will use this relation to estimate the eigen-
functions in a new way.

The infinitesimal generator of a diffusion Xt on a compact interval [l, r]
with two reflective barriers and a strictly positive diffusion coefficient σ2(Xt)
is self adjoint and negative semidefinite so that the standard Sturm-Liouville
theory applies.

Aφ = −λφ with λ > 0 and φ′(l) = φ′(r) = 0, a twice continuously dif-
ferentiable solution to this eigenvalue problem will result in an eigenfunction
for A.

Taking the expected value of the infinitesimal generator with respect to
the stationary distribution q(Xt) we have

E[Aφ] = 0.

In other words
∫

R
Aφqdx = 0.

The infinitesimal generator of a diffusion Xt with reflective barriers [l, r]
where φ is continuous and twice continuously differentiable with φ′(l) = 0
and φ′(r) = 0 can be expressed in terms of the stationary distribution. We
have ∫

[l,r]
[µφ′ +

1

2
(σ2]φ′′]q = 0.
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Integration by parts gives us

∫

[l,r]
[µq − 1

2
(σ2q)′]φ′ +

1

2
(σ2(x)qφ′|rl .

Since φ′(l) = φ′(r) = 0 , we have

∫

[l,r]
[µq − 1

2
(σ2q)′]φ′ = 0.

We can choose φ in a way that we have

[µq − 1

2
(σ2q)′] = 0

Now

µφ′q +
1

2
σ2φ′′q = λφq

so that we have

Aφ =
(σ2qφ′)′

2q
= λφq.

and

σ2(x) =
2λ

∫ x
l φqdx

qφ′
(4)

(Hansen and Scheinkman (1995) and Hansen, Scheinkman, Ait-Sahalia (2010)).
Hansen, Scheinkman and Touzi (1998) have proved that the eigenfunction

which corresponds to the eigenvalue closest to zero is monotonic. They have
also shown that liml→0q(l)φ

′(l) = 0.
Ait-Sahalia (1996) has proposed a method to estimate the diffusion coef-

ficient of a stochastic differential equation having an affine drift.
Demoura (1998) has proposed estimating two eigenfunctions in order to

estimate the drift and the diffusion functions simultaneously.
Let φ1 and φ2 be two eigenfunctions associated with eigenvalues λ1 and

λ2 .

µφ′1 + 1/2σ2φ′′1 = λ1φ1

and

µφ′2 + 1/2σ2φ′′2 = λ2φ2.

The simultaneous solution of these equations gives µ and σ.
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In section 2, we will review neural networks. In section 3, we will present
a new way of identifying the drift and diffusion functions. In section 4, we will
present a new way of estimating the transition density and the eigenfunctions.
In section 5, we will study the asymptotic properties of the estimators we
propose.

2 Review of Derivative estimation Using Ar-

tificial Neural Networks

Eigenfuncions of the infinitesimal generator are unknown so that we have
to use certain techniques to approximate them. A number of authors have
shown that feedforward neural networks are capable of approximating a large
class of functions and their partial derivatives (Cybenko (1989), Hornik. Stin-
chombe and White (1990) and Hornik (1991)). Let ψ be the common activa-
tion function, a , β and γ vectors of parameters and x a vector of variables.

Let N (n)
k (ψ) = {e : Rk → R|e(x) =

∑n
j=1 βjψ(a′jx − γj)} be the set of

functions implemented by a neural network with n hidden units and a single
output unit.
Nk(ψ) =

⋃∞
n=1N (n)

k (ψ) is the set of functions implemented by a network
with any number of hidden units.

Let α = (α1, ..., αk) of non-negative integers be a multi-index. |α| =
α1 + ...+ αk is the order of the multi-index.

Dαf(x) =
∂α1+...+αkf

∂xα1
1 ...∂x

αk
k

is the partial derivative of a function f of x = (x1, ..., xk) .
Let Cm(Rk) be the space continuous functions with continuous partial

derivatives of order |α| ≤ m. Let Q be a finite measure on Rk. For f ∈
Cm(Rk) the following norm is defined:

||f ||m,p,Q = {
∑

|α|≤m

∫

Rk
|Dαf |pdQ}1/p

for 1 ≤ p <∞.
The weighted Sobolev space Cm,p(Q) is defined as follows:

Cm,p(Q) = {f ∈ Cm(Rk) : ||f ||m,p,Q ≤ ∞}
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.
A subset S of Cm,p(Q) is dense in Cm,p(Q) if for all f ∈ Cm,p(Q) there

exists a function g ∈ S such that ||f − g||m,p,Q < ε for all ε > 0.
We are now ready to state Hornik’s theorem.
Theorem (Hornik 1991 Theorem 4): If ψ ∈ Cm(Rk) is non-constant

and all of its derivatives up to order m are bounded, then N (n)
k (ψ) is dense

in Cm,p(Q) for all finite measures Q on Rk .
This result is the basis for the neural network approximations that we

will make. In the literature interest has been on approximating derivatives.
In the following, we will have to deal with integrals of neural networks ap-
proximations, so that we need the following property:

Lemma Let a = (a1, ..., ak). If ||f − g||m,p,Q < ε for all ε > 0 then

||
∫ x

a
fdQ−

∫ x

a
gdQ||m,p,Q < ε.

Proof
||
∫ x

a
fdQ−

∫ x

a
gdQ||m,p,Q <

∫

Rk
||f − g||m,p,Qdµ.

Choosing ||f − g||m,p,Q < ε/Q does the trick.

Q.E.D.

3 Identification of Scalar Diffusions Using Re-

peated Eigenfunction Estimation

In this section we propose a new way of expressing the diffusion function of
a stochastic differential equation We have

dXt = µ(Xt)dt+ σ(Xt)dWt.

We observe that if the eigenfunction φ(xt) of the infinitesimal generator

Aφ = µ(x)
∂φ(x)

∂x
+

1

2
σ2(x)

∂2φ(x)

∂x2

is a twice continuously differentiable function, then by Ito’s Lemma it follows
the stochastic differential equation

dφ(Xt) = Aφ(Xt)dt+ σ(Xt)
∂φ(x)

∂x
dWt.
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To simplify the notation we will write φt for φ(Xt) and do the same for the
other functions. We have

dφt = −λ1φtdt+ σt
∂φ(x)

∂x
dWt.

Using the technique summarized in section 3 , φ(xt) can be estimated and

∂φ(x)

∂x

can be calculated analytically. σt is the only unknown in this equation.Now
the data we have are xt . Once the eigenfunction φ(xt) is estimated we can
generate the series φt and try to estimate the drift and diffusion functions of
the equation

dφt = −λ1φtdt+ σt
∂φ(x)

∂x
dWt.

This equation also has an infinitesimal generator whose eigenfunctions can be
estimated using the procedure we have already used. Let L be the infinitesi-
mal generator of the equation satisfied by φt and f be its eigenfunction. We
have

Lf(φt) = −λ1φt
∂f

∂φ
+

1

2
σ2
t [φ
′
t]
2∂

2f

∂φ2
.

Lf(φt) = −λ2f(φt)

so that

−λ1φt
∂f

∂φ
+

1

2
σ2
t [φ
′
t]
2∂

2f

∂φ2
= −λ2f(φt)

i.e.

σ2
t =

2

[φ′t]2f ′′
[−λ2f(φt) + λ1φtf

′] (5)

where

f ′ =
∂f

∂φ
, f ′′ =

∂2f

∂φ2
.

To find µ(Xt), we can use the relation

µ(x)
∂φ(x)

∂x
+

1

2
σ2(x)

∂2φ(x)

∂x2
= λφ(x).
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4 Estimating the Transition Density and the

Eigenfunctions

To estimate the eigenfunctions of the infinitesimal generator, we will have to
estimate the transition density of the process. Ait-Sahalia (2002) has used
Hermite expansions to estimate the transition density. Here we propose a
different method. Let

dXt = µ(Xt)dt+ σ(Xt)dWt

be a time homogeneous stochastic differential equation. Let h(Xt) ∈ C2
0 be

a continuous function with compact support, having continuous derivatives
of order two.

Suppose that h is a function of our choice and has the following properties:
E[h(Xt)] is independent of time t and E[h2] <∞.

Let p(Xt, Xt−1) be the time homogeneous transition density of the pro-
cess.

Let p(Xt, Xt−1, γ) be a neural networks approximation of p(Xt, Xt−1).
The function u(Xt−1) = E[h(Xt)|Xt−1] satisfies Kolmogorov’s backward

equation.
Now E[h(Xt)|Xt−1] =

∫
D h(y)p(y,Xt−1)dy. A neural networks approxi-

mation of this expression will be

u(Xt−1, γ) =
∫

D
h(y)p(y,Xt−1, γ)dy (6)

Notice that the integral will be evaluated analytically. This aspect of the
procedure can be simplified by a judicious choice of the function h and the
neural networks approximation p(Xt, Xt−1, γ) .

Now E|u(Xt−1)− h(Xt)|Xt−1] = 0.
So that we have a martingale difference and we can use martingale es-

timation techniques. Since we have E[u(Xt−1, γ)] = E[h(Xt)] the sample
analog will be

1

T

T∑

t=0

[u(Xt−1, γ)− h(Xt)]. (7)

The resulting estimate of the transition density will be denoted p(x, y, γ̂).
Let φ(x, θ) be a neural networks approximation of φ(x). Then the condi-

tional expected value can be approximated by
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∫

D
φ(y, θ)p(y,Xt−1, γ̂)dy.

Since
E[[φ(Xt)|Xt−1)]− exp(λ)φ(Xt−1)|Xt−1] = 0

its sample analog will be

1

T

T∑

t=0

[
∫

D
φ(y, θ)p(y,Xt−1, γ̂)dy − exp(λ)φ(Xt−1)].

On the other hand, since

E[E[φ(Xt)|Xt−1)]− exp(λ)φ(Xt−1)] = 0

another sample analog will be

1

T

T∑

t=0

[
∫

D
φ(y, θ)p(y,Xt−1, γ̂)dy − exp(λ)φ(Xt)]. (8)

4.1 Activation Functions

To approximate φ(Xt) using neural networks, we will have to choose acti-
vation functions. A combination of logistic functions has been fruitful in
empirical studies. Let α and β be vectors of parameters. Let ψ be the
following activation function.

ψi(x) =
1

1 + e−αix
.

φ(x, θ) =
n∑

i=1

βiψ1(αix) (9)

is the function we will use to approximate φ(Xt).
Since the cumulative distribution function is sigmoid, we will specify the

transition density using a gaussian radial basis function.
Let γ = (ai, bi, ci, di, ei) be the parameter vector. Let

ρ(x− ci) = exp[−bi(x− ci)2]
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and

η(y − ei) = exp[−di(y − ei)2]
ψ(x, y, γ) is the activation function given by

ψ(x, y, γ) =

∑n
i=1 ρ(x− ci)η(y − ei)∑n

i=1 ρ(x− ci)
i.e.

p(x, y, γ) =

∑n
i=1 ρ(x− ci)η(y − ei)∑n

i=1 ρ(x− ci)
The function h(y) to be chosen to estimate the transition density can be

of the form
h(y) = y (10)

so that

u(Xt−1, γ) =
∫

D
h(y)p(y,Xt−1, γ)dy =

∑n
i=1 ρ(x− ci)

∫
D yη(y − ei)dy∑n

i=1 ρ(x− ci)
(11)

facilitating integration. This is like estimating the transition density from
the conditional expected value. Different choices of h are possible. The
expression

1

T

T∑

t=0

[u(Xt−1, γ)− h(Xt)]

will then become

1

T

T∑

t=0

[

∑n
i=1 ρ(Xt−1 − ci)

∫
D yη(y − ei)dy∑n

i=1 ρ(Xt−1 − ci)
−Xt]. (12)

Despite the complicated appearance of u(Xt−1, γ), this expression will
reduce to linear combinations of gaussian densities in both the numerator
and the denominator.

Notice that our results do not depend on the particular neural networks
activation functions that we have chosen. Any activation function will do as
long as the conditions of theorems 2.2 and 2.3 of Sorensen (2009) are satisfied.
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5 Asymptotic Properties

All asymptotic theory is based on laws of large numbers on the one hand and
central limit principles on the other. In this paper we will restrict ourselves
to the estimation of ergodic scalar diffusions.

5.1 Ergodicity

Criteria for ergodicity can be given as follows: defining the scale measure

s(x, θ) = exp [− 2
∫ x

l

µ(y, θ)

σ2(y, θ)
dy]

for b ∈ (l, r), we have the following conditions:

Condition For all θ in the parameter space, the following hold:

∫ b

l
s(x, θ)dx =

∫ r

b
s(xθ)dx =∞

and

A(θ) =
∫ r

l
[s(x, θ)σ2(x, θ)]−1dx <∞.

Under these conditions the process Xt is ergodic, has a stationary prob-
ability distribution with density

µθ(x) = [A(θ)s(x, θ)σ2(x, θ)]−1

for x ∈ (l, r) (Sorensen 2009).

5.2 Martingale Estimating Functions

Martingale estimating functions are functions of the type

Gθ(θ) =
T∑

t=0

g(Xt, Xt−1, θ)
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where E[g(Xt, Xt−1, θ)|Xt−1] = 0. Since E[φ(Xt+s) − exp(λs)φ(Xt)|Xt] = 0
Kessler and Sorensen (1999) have proposed using them to estimate eigen-
functions. In the general case they have considered functions of the form

Hk
T (θ) =

T∑

t=0

k∑

j=1

βj(θ)φj(Xt, θ)− exp(λj(θ)φj(Xt−1, θ)

where the βj(θ) are continuously differentiable functions of θ only and are
chosen to minimize the variance of consistent and asymptotically normal
estimators. Explicit expressions for βj are given in Kessler and Sorensen
(1999) and Sorensen (2009) for ergodic diffusions.

5.3 Convergence and Asymptotic Distribution

To show the convergence of the estimators and to find their asymptotic dis-
tributions,we will verify the conditions of theorems 2.2 and 2.3 of Sorensen
(2009) as summarized below.

Gθ(θ) =
T∑

t=0

g(Xt, Xt−1, θ)

is the objective function where g(Xt, Xt−1, θ) are martingale estimating func-
tions. Let Qθ denote the probability measure on the state space D of Xt with
the density p(x, y, θ) of two consecutive observations.

Qθ(gj(θ)
2 =

∫

D2
gj(y, x, θ)

2p(x, y, θ)dydx <∞

where gj are the components of g. The function g(Xt, Xt−1θ) is integrable
with respect to Qθ and that Qθ(g(θ0) = 0.

The function g(x, y, θ) is twice continuously differentiable, g and ∂gi(x, y, θ)/∂θi
i = 1, ..., p are dominated by functions free from θ and integrable with respect
to Qθ.The p by p matrix W = Qθ0(∂gi(x, y, θ)/∂θ) is of full rank. Then a
consistent estimator exists with

√
T (θ̂T − θ0)→ Np(0,W

−1VW T−1

).

The matrices W and V can be estimated as follows:

Wn =
1

T

T∑

t=1

∂θg(Xt, Xt−1θ̂)

∂θ
→ W
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and

Vn =
1

T

T∑

t=1

g(Xt, Xt−1θ̂)g(Xt, Xt−1, θ̂)
T )→ V

where the convergence is with respect to the law of θ0. All these results lead
us to the following conclusion:

Theorem

The transition density and the eigenfunctions of an ergodic scalar stochas-
tic differential equations

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dWt

the solution of which is on a compact interval [l, r] with two reflective barriers,
can be estimated by the martingale estimation functions

1

T

T∑

t=0

[u(Xt−1, γ)− h(Xt)]

and

1

T

T∑

t=0

[
∫

D
φ(y, θ)p(y,Xt−1, γ̂)dy − exp(λ)φ(Xt)]

where θ ∈ θ a compact set. The estimators are convergent and asymp-
totically normal.

Proof

Taking
g(Xt, Xt−1, θ) = u(Xt−1, γ)− h(Xt)

and then taking

g(Xt, Xt−1, θ) =
∫

D
φ(y, θ)p(y,Xt−1, γ̂)dy − exp(λ)φ(Xt)

theorems 2.2 and 2.3 of Sorensen (2009) will give us the desired results.

Q.E.D.
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6 Conclusions

We have proposed a new way of estimating the transition density of a scalar
stochastic differential equation which we have then used to estimate the
eigenfunctions of the equations followed by the underlying process and the
one followed by its eigenfunctions. The drift and the diffusion function can
then be identified as indicated in section 3.
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