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†
 

 

We continue the work of Aumann (Ann. Statist. 4 (1976), 1236-1239), Geanakoplos and Polemarchakis (J. Econ. Theory 28 (1982), 

192-200) on common knowledge and consensus, reconsidering the arguments and the findings of both Aumann (1976) and 

Geanakoplos and Polemarchakis (1982) and offering different insights into the revision process. By revealing set inclusion property 

of the revision process, we show that the consensus conditions should be redefined. This redefinition enables us to demonstrate that 

until consensus is reached, in fact neither of the agents make apparent revision and each agent keeps repeating his initial posterior. 

Therefore the equilibrium posterior should be equal to initial posterior of the agent who does not make any apparent revision 

through the communication process. Our results show that regardless of the length of the communication process, it is impossible 

for the agents to agree on a value which is different from the initial posteriors.  Finally, we shed light on some crucial points left 

unclear by Aumann (1976) and Geanakoplos and Polemarchakis (1982).  
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Beginning from Aumann (1976), in economic theory it is well understood that opinions depend on 

prior beliefs held and additional information received. Aumann (1976) address the question of whether 

communication of beliefs between agents is sufficient to remove the differences of beliefs. Aumann 

demonstrates that, if two agents have identical priors and if their posteriors for a given event A are common 

knowledge, then these posteriors must be equal, even though the two agents may base their posteriors on quite 

different information.  

Aumann did not address the issue of how common knowledge of agents’ posteriors is achieved. In 

their elegant study, Geanakoplos and Polemarchakis (1982) address the questions left open by Aumann’s 

argument and introduce a communication process between two agents in which the agents announce their 

posteriors to each other (indirect communication). Following Aumann (1976), Geanakoplos and 

Polemarchakis (1982) show that for an arbitrary event A, if their priors are common and if their information 

partitions are finite, then two agents, simply by communicating back and forth their posteriors, converge in 

finitely many steps to a common posterior, which is common knowledge.  

In this paper, we address the same questions as Geanakoplos and Polemarchakis (1982) which have 

been left open by Aumann’s argument. First, Geanakoplos and Polemarchakis (1982) obtain the conditions 

under which consensus is reached. Second, the authors show that the sum of the cardinalities of the two 

partitions is an upper bound on the number of steps required for the process to converge. Moreover, 
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Geanakoplos and Polemarchakis (1982) introduce a special case of the revision process which can be 

constructed by setting the number of total steps equal to n (an integer) and the consensus is reached at the 

“final step n”, even though no evident revision occurs until this final step.  

In the present paper we provide different insights into the revision process; first, we refine the 

revision process and show the “set inclusion property” of the process; second, we re-determine the consensus 

condition and show that until consensus is reached, the agents make no apparent revisions and each agent 

keeps repeating his initial posterior. Therefore the equilibrium posterior should be equal to initial posterior of 

the agent who does not make any apparent revision through the communication process. Furthermore, our 

results show that regardless of the length of the communication process, it is impossible for the agents to 

agree on a value which is different from the initial posteriors. Third, we demonstrate that the upper bound on 

the number of steps required for the process to converge should be tightened. Finally, we observe that the 

assignment of n (the “final step”) introduced by Geanakoplos and Polemarchakis (1982) is left indefinite and 

is arbitrary and their analysis does not determine the numerical value of the final step. In this sense our 

analysis completes theirs by adding a characterization of this numerical value. By introducing a precise 

definition for the “final step n” we show that it is not arbitrary but its determination has crucial importance on 

consensus analysis, in that the case they introduce is not a special case but it is indeed the nature of the 

revision process that no apparent revision occurs until the final step. Moreover, this final step should be 

characterized by the extent of the “event” on which the agents communicate.  

Let Ω  be a finite set of states of the world and Ω2 the set of possible events. There are H agents, 

each agent h being endowed with a partition hΠ  of Ω . When the state Ω∈w  occurs, agent h only knows that 

true state of the world belongs to ( )whΠ , which is the cell of h’s partition that contains w . We say that a 

partition Π  is finer than any other partition Π′  if and only if for all w , ( ) ( )ww Π′⊆Π  and there exists 

Ω∈′w  such that ( ) ( )ww ′Π′⊂′Π . A partition Π′  is coarser than any other partition Π  iff Π  is finer than 

Π′ . The partition represents the ability of agent h to distinguish among the states of the world. The coarser his 

partition is, the less precise his information is, in the sense that he distinguishes among fewer states of the 

world. We say that an agent h endowed with a partition hΠ  knows an event E at w  if and only if  ( ) Ewh ⊆Π  

following Aumann (1976).  

To follow the setup introduced by Geanakoplos and Polemarchakis (1982), let us assume that there 

are only two agents, h=1,2. More generally, let the two partitions, 1Π  and 2Π  be finite; 

{ }K112111 ,...,, ΠΠΠ=Π  and { }L222212 ,...,, ΠΠΠ=Π . Let A be an event, and let ( ).hq  denote the posterior 

probability ( )hAΠPr  of A conditional on  h’s information; i.e., if Ω∈w , then ( ) ( )( )wAwq hh Π= Pr . In each 
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step, the agents communicate to each other only their posteriors. Note that in order to represent the “step” we 

use an upper index. In step 1, agent 1 first announces ( ) ( )( )wAwq 1

1

1 Pr Π= . Agent 2 then announces 

( ) ( ) ( )( )wqwAwq 1

12

1

2 ,Pr Π= . In step 2, agent 1 then announces ( ) ( ) ( )( )wqwAwq 1

21

2

1 ,Pr Π=  and agent 2 

announces ( ) ( ) ( ) ( )( )wqwqwAwq 2

1

1

12

2

2 ,,Pr Π= , etc.  Following Geanakoplos and Polemarchakis (1982), we 

can introduce Definition 1.  

 

          Definition 1: If for some m, ( ) ( )wqwq mm 1

2

1

1

++ =  holds, then we say that the consensus is reached at step 

m+1.    

 

Define the sets  ( )wm ′Π1  and m

1Ω  recursively as  

( ) ( )( ){ }0

1

1

211 : Ω∈′Ω∩′Π=′Π − www mm                                (1) 

( ) ( )( )wAwq mm

11 Pr Π=                                                                                                               (2) 

( )( ) ( ){ }wqwAw mmmm

11

1

11 Pr: =′ΠΩ∈′=Ω −                                      (3) 

( ) ( )ww ′Π=′Π 1

0

1   and   Ω=Ω0

1 .  

Define the sets  ( )wm ′Π 2  and m

2Ω  recursively as  

( ) ( )( ){ }0

2122 : Ω∈′Ω∩′Π=′Π www mm                 (4) 

( ) ( )( )wAwq mm

22 Pr Π=                             (5) 

( )( ) ( ){ }wqwAw mmmm

22

1

22 Pr: =′ΠΩ∈′=Ω −                           (6) 

( ) ( )ww ′Π=′Π 2

0

2  and Ω=Ω0

2 .  

 

It directly holds from (1) that for all Ω∈′w ,  ( ) ( )ww mm ′Π⊆′Π −1

11  and likewise, from (4) that 

( ) ( )ww mm ′Π⊆′Π −1

22 , respectively.                       (7)  

It directly follows from (1) and (3) that 1

21

−Ω⊆Ω mm  holds for all m.                        (8)  

Moreover, it directly follows from (4) and (6) that mm

12 Ω⊆Ω  holds for all m.                         (9)              

The results (8) and (9) show us the “set inclusion” property of the revision process. It also directly follows 

from (8) and (9) that, for h=1,2 and 1>m , ( ) ( )1−Ω∩⊆Ω∩ m

h

m

h AA .  
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Since 1

1

+Ωm  is set of states that are consistent with agent 1’s first m+1 announcements, while 1

2

+Ωm  is 

the set of states that is consistent with agent 2’s first m+1 announcements. Clearly, this defines two sequences 

of non-empty, nested sets whose limit ∞Ω1  and ∞Ω2  exist and must be non-empty.  

Now, we can write ( )wqm 1

1

+  and ( )wqm 1

2

+  respectively as, 

( ) ( )( )wAwq mm 1

1

1

1 Pr ++ Π=  = ( )( )mwA 21Pr Ω∩Π  = ( )mmA 2

1

1Pr Ω∩Ω +             (10)

  

( ) ( )( )wAwq mm 1

2

1

2 Pr ++ Π=  = ( )( )1

12Pr +Ω∩Π mwA  = ( )1

1

1

2Pr ++ Ω∩Ω mmA             (11) 

By using set inclusion property and Eqs. (10) and (11), we can rewrite the posteriors ( )wqm 1

1

+  and 

( )wqm 1

2

+ , as given in Eqs.(12) and (13) respectively.  

     ( ) ( )
( )

( ) 















Ω⊂ΩΩ

Ω=ΩΩ

=Ω∩Ω=
++

+

++

mmm

mmm

mmm

ifAP

ifAP

APwq

2

1

1

1

1

1

122

2

1

1

1

1                                           (12)          

     ( ) ( )
( )

( ) 















Ω⊂ΩΩ

Ω=ΩΩ

=Ω∩Ω=
+++

+++

+++

1

1

1

2

1

2

1

2

1

1

1

1

1

2

1

1

1

2

mmm

mmm

mmm

ifAP

ifAP

APwq                                (13)  

       

           According to Eq.(12), at step 1+m  agent 1 has to announce one of two possible posteriors; one is 

based on his own information ( )1

1Pr +ΩmA , the other is the latest posterior of agent 2 which she has announced  

( ) ( )wqA mm

22Pr =Ω  at previous step m. Likewise, according to Eq.(13) agent 2 has to announce his own posterior 

( )1

2Pr +ΩmA  or repeat the latest posterior of agent 1 which she has announced  ( ) ( )wqA mm 1

1

1

1Pr ++ =Ω  at step m+1.  

The preceding argument leads us to seek the conditions under which agent h has obtained new information 

through two subsequent steps, m and 1+m .  Proposition 1 deals with this issue and has crucial importance to 

obtain the consensus condition.  

 

 Proposition 1 :      

            a.)  Suppose that 
mm

1

1

1 Ω=Ω +
. Then 

1

22

+Ω=Ω mm
.                                                      

            b.)  Likewise,  if  
mm

2

1

2 Ω=Ω +
, then  

2

1

1

1

++ Ω=Ω mm
.                                                    
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Particularly, the implication of the relations given by Proposition 1  is as follows: if one of the 

agents has stopped updating his information, then no further update is possible in next steps. Eqs. (12), (13) 

and Proposition 1 enable us to identify the sufficient condition under which consensus is inevitably reached.  

Proposition 2 deals with this issue. 

 

Proposition 2: By using Eqs.(12), (13) and Proposition 1, we obtain the following sufficient 

condition.  

               ( ) ( )wqwq mm 1

2

1

1

++ =    holds  if and only if  
mm

2

1

2 Ω=Ω +
   holds.                         (14) 

 

The condition given by (14) implies that consensus is inevitably reached at step 1+m . Proposition 1 and 

Proposition 2 show that at any step whenever agent 2 stops updating consensus is reached. When the 

condition given by (14) is satisfied, according to Eqs. (12), (13) the posterior of one of the agents should have 

converged to the latest posterior announced by his correspondent. 

Eqs. (12), (13) and Proposition 2 have further implications. First, assume that during first m steps 

consensus is not reached ( ) ( )wqwq mm

21 ≠ , then 1

2

1

12

−− Ω⊂Ω⊂Ω mmm  for 1≥m , implying that every step of the 

revision process the information that agent h obtains from his correspondent should change. Second, 

particularly if ( ) mw 1

1

1 Ω⊂Π , then for all 1>m ,  ( ) ( )wqwq m

1

1

1 =  holds. In words, given the condition 

( ) mw 1

1

1 Ω⊂Π   agent 1’s first m announcements are identical and moreover, equal to his initial 

announcement ( )wq1

1 . The second observation leads us to question that even though the information that an 

agent h obtains from his correspondent should change, the information that agent h bases on to revise his 

posterior changes or not? Specifically we question whether ( )( ) ( )( )1−Ω∩Π⊂Ω∩Π m

jh

m

jh ww  for h=1,2 and 

hj ≠  ?   Proposition 3 clarifies this issue.  

 

Proposition 3 : Suppose that consensus is not reached at first m steps, 1≥m  and ( ) ( )wqwq mm

21 ≠ . 

Then we say that in fact there have been no apparent revisions and each agent keeps repeating his initial 

posterior through m steps: ( ) ( )wqwq m

1

1

1 =  and ( ) ( )wqwq m

2

1

2 =  for all m. Furthermore, consensus should be 

reached in fact as soon as one of the agents makes his first apparent revision, and no further updates will be 

possible. Therefore, equilibrium posterior should be the initial posterior of the agent who does not make any 

apparent revision.                
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Note that our result given by (14) is the sufficient condition for the revision process to converge and 

completely different from the result obtained by Geanakoplos and Polemarchakis (1982) who argue that 

consensus is reached when both agent 1 and agent 2 gain no information.  

 According to Proposition 1 and Proposition 2 once an agent stops updating, no further updates are 

possible and agreement should be reached at that step. Since each agent can update at most K or L times, it 

follows that the maximum upper bound to reach consensus should be equal to { }LK ,min . Note that this result 

is also in contrast with the result of Geanakoplos and Polemarchakis who argue that the sum of the 

cardinalities of the two partitions (K+L) is an upper bound on the number of steps required for the process to 

converge.  

It is clear from Eqs.(12) , (13) and Proposition 2 that at every step of the revision process until the 

consensus is reached, the information of each agent changes but the posterior of the agents does not change. 

The consensus condition determined by Geanakoplos and Polemarchakis yields possible misinterpretation in 

the sense that either agent 1 or agent 2 has to gain information unless the equilibrium has been reached.  Note 

carefully that our result given in Proposition 2 discards such misinterpretation; i.e., if agent 1 gains 

information and agent 2 does not gain, then consensus is reached at that step.  

Moreover, according to Proposition 3 each agent insists on announcing his initial posterior until 

consensus is reached. Therefore, it must be the case that until final step ( ) ( )1−Ω∩⊂Ω∩ m

h

m

h AA  for 1>m . 

Consequently, we explicitly say that the indefinite term “final step n” can not be an arbitrary integer. We 

introduce Proposition 4 which completes the analysis of Geanakoplos and Polemarchakis (1982) and shows 

that it is not a special case but it is indeed the nature of the revision process to take 1≥n  steps and no 

apparent revision occurs until the final step. Moreover, this final step should be characterized by the extent of 

the “event” on which the agents communicate.  

  

Proposition 4:  If we want to construct a revision process which takes n steps to converge then no 

apparent (evident) revision occurs until the final step n, and that the number of total steps – final step ( )n  can 

not be an arbitrary integer but should be set equal to the cardinality of event A,  # A.  
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Appendix 

 

Proof of Proposition 1:  

a.)  If 
1

11

+Ω=Ω mm
, then ( ) ( )( )1

12

1

2 Pr ++ Ω∩Π= mm wAwq ( )( ) ( )wqwA mm

212Pr =Ω∩Π= , and for all 
mw 2Ω∈′ , 

( )( )1

12Pr +Ω∩′Π mwA ( )( )mwA 12Pr Ω∩′Π= ( ) ( )wqwq mm 1

22

+==  implying 
1

2

+Ω∈′ mw , and therefore 
1

22

+Ω=Ω mm
.  

b.) Likewise, if 1

22

+Ω=Ω mm , then ( ) ( )( )mm wAwq 21

1

1 Pr Ω∩Π=+ ( )( ) 2

1

1

21Pr ++ =Ω∩Π= mm qwA , and for all 

1

1

+Ω∈′ mw , ( )( )mwA 21Pr Ω∩′Π ( )( )1

21Pr +Ω∩′Π= mwA ( ) ( )wqwq mm 2

1

1

1

++ == , implying 
2

1

1

1

++ Ω=Ω mm
.  

 

Proof of Proposition 3: Suppose that through 1≥m steps consensus is not reached, ( ) ( )wqwq mm

21 ≠ . For step 

m+1, according to Eq.(10) the belief of agent 1 is shown as ( ) ( )( )mm wAwq 21

1

1 Pr Ω∩Π=+ . Therefore, for all 

( )mmw 2

1

1 Ω∩Ω∈′ +   ( )( ) ( )wqwA mm 1

121Pr +=Ω∩′Π  have two possible values; 

a.)  if mm

2

1

1 Ω=Ω +  then ( )( ) ( )mmmw 2

1

121 Ω∩Ω⊂Ω∩′Π +  implying ( )( ) ( )mmmw 2

1

121 Ω=Ω⊂Ω∩′Π + ,  

and according to Eq.(12)  ( ) ( )( ) ( )( ) ( ) ( )wqAwAwAwq mmmmm

222121

1

1 PrPrPr =Ω=Ω∩′Π=Ω∩′Π=+

U , 

implying consensus.  

b.) if mm

2

1

1 Ω⊂Ω +  then ( )( ) ( )mmmw 2

1

121 Ω⊂Ω⊂Ω∩′Π + , and according to Eq.(12)  

( ) ( )( ) ( )( ) ( ) ( )wqAwAwAwq mmmmm

2

1

12121

1

1 PrPrPr ≠Ω=Ω∩′Π=Ω∩′Π= ++

U .  

Since, the true state should be ( )mmw 2

1

1 Ω∩Ω∈ + , according to Eq.(10)  for ( ) ( )( )mm wAwq 21

1

1 Pr Ω∩Π=+  three 

cases are possible;  

a.) if ( )( )mw 21 Ω⊂Π  then ( ) ( )( ) ( )( )wAwAwq mm

121

1

1 PrPr Π=Ω∩Π=+ , implying ( ) ( ) ( )wqwqwq mm

2

1

1

1

1 ≠=+ .   

b.) if ( )( ) ( )ww m

121 Π⊂Ω∩Π  and ( )( ) mmw 221 Ω⊂Ω∩Π  then for all ( )mmw 2

1

1 Ω∩Ω∈′ +  

( ) ( )( ) ( )mmm AwAwq 221

1

1 PrPr Ω=Ω∩′Π=+

U  since because ( )( ) mmw 221 Ω⊂Ω∩′Π . Thus, implying 

( ) ( )wqwq mm

2

1

1 =+ .   

c.) if ( )( )mw 21 Ω⊃Π , then ( ) ( )( ) ( )mmm AwAwq 221

1

1 PrPr Ω=Ω∩Π=+  , implying  ( ) ( )wqwq mm

2

1

1 =+ .   

The same analysis is also true for agent 2.  
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Proof of Proposition 4: Assume that consensus is reached at step m+1. According to Proposition 2, for all 

1>m  and h=1,2 ( ) ( )wqwq
m

hh =1 . Thus 
( )

( )
( )

( )m

h

m

h

h

h AA

Ω

Ω∩
==

Ω

Ω∩

Pr

Pr
...

Pr

Pr
1

1

 and 1−Ω⊂Ω m

h

m

h ,  implying  

( ) ( ) ( )m

hhh AAA Ω∩⊃⊃Ω∩⊃Ω∩ ...21 . Therefore if we assume that at each step at least one element of A is 

eliminated, then the maximum number of steps required to reach consensus should be equal to the cardinality 

of A,   # A = m+1.  

 

 


