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Abstract

We propose a simple cognitive model where qualitative and quantitative com-

parisons enable animals to identify objects, associate them with their properties

held in memory and make naive inference. Simple notions like equivalence re-

lations, order relations are used. We then show that such processes are at the

root of human mathematical reasoning by showing that the elements of totally

ordered sets satisfy the Peano axioms. The process through which children learn

counting is then formalized. Finally association is modeled as a Markov process

leading to a stationary distribution.

Keywords: Cognitive system, equivalence relations, order relations, naive logic, Peano axioms, order

precedes number, association, Markov chain.

1 Introduction

The human race is a product of evolution. All our abilities have come down through

generations as a result of natural selection. The basic human ability of "making math-

ematics" is no exception. So it should be reasonable to search for its antecedents in

the animal kingdom.
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At �rst sight, searching for mathematical ability in animals might seem to be

surprising. After all, animals are not supposed to be intelligent. Intelligence is mo-

nopolized by the human species and mathematics is one of its supreme achievements.

Animal behavior is supposed to be governed by instinct. However, anyone who has

watched a documentary can not fail to make certain observations. Imagine predators

and their prey. The predator seems to know its own speed and the speed of its prey.

In most cases prey can move faster than predators so that predators approach their

prey under cover. Once the predator is in sprinting distance it attacks catching its

prey. In such a case a comparison of speeds and distances is required to make a suc-

cessful attempt. Such quantitative comparisons seem to be at the basis of our own

mathematical ability.

Land animals live in an essentially two dimensional space. Sea creatures, tree

dwelling animals and most birds live in a three dimensional space. Living and moving in

these spaces necessitate cognitive abilities like speed and distance recognition. Factors

like predator prey relations, access to food sources, force animals to make quantitative

comparisons. The notions of "more" and "less" , "before" and "after" are essential for

survival. All animal species have evolved to the point of possessing cognitive abilities

which enable them to survive in geometric space. The human species is no exception.

Our aim in this paper is to present a mathematical model of the cognitive pro-

cesses that enable animals (including humans) to compare objects and quantities. We

emphasize the expression "mathematical model". Any scienti�c study of animal and

human cognitive processes has to be based on empirical research. The study of the

neurological structures which underly these cognitive processes is beyond our capa-

bility. We will content ourselves with constructing a model of how qualitative and
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quantitative comparisons are made and structured. We will use the notation of sym-

bolic logic and elementary notions of equivalence relations, truth, order relations by

showing how they arise intuitively through qualitative and quantitative comparisons.

We will then show how naive inference can be made by association. As the title shows

we are going to argue that human mathematical reasoning is a highly developed form

of these processes and that work on the foundations of mathematics has to take into

account the evolutionary approach.

There is an extensive literature on the evolutionary and cognitive foundations of

mathematics. Good reviews of literature can be found in Beran (2008) , Hauser and

Spelke (2004) and Feigenson, Dehaene and Spelke (2004) in the context of cognitive

neurosciences. In the �eld of cognitive architectures related approaches exist. A good

review of literature can be found in Langley, Laird and Rogers (2009). However a

formal cognitive model of how mathematical ideas come about is lacking.

2 The Model

A cognitive system enables animals to become aware of the outside world and adjust

their behavior accordingly to survive. Any cognitive system has to have perception,

memory and the ability to make inference. Information about objects and their be-

havioral patterns perceived by the the cognitive unit are stored in memory in the form

of images. Di�erent units of information i.e. images, are compared and combined to

make inference in order to draw valid conclusions about the external world. Compar-

isons are made by superposition of images. Combining information is made through

association.
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The world consists of objects and distances between them. Objects have certain

observable de�ning physical characteristics.

De�nition: Objects An object is a set of characteristics. We denote objects by

xi and their characteristics by {ci1, ..., cin} for i ∈ N .

If the de�ning characteristics of two objects match, then these objects are said to

be similar. We express the notion of similarity in the following way.

De�nition: Similarity When ci1 ≡ cj1...cim ≡ cjm, objects xi and xj are similar

for i 6= j and m ≤ n where ≡ denotes identity and the numbers are just name tags.

We denote similarity by xi ∼ xj. We denote the set of objects similar to xi by [Xi].

Obviously [Xi] is an equivalence class representing say, an animal species. Equivalence

classes partition the set of objects.

De�nition: xi → yj represents moving from object xi to object yj. We denote the

distance between these objects by ∂(xi, yj).

The set of characteristics serves as a template to identify a particular object as a

member of a species. In the memory, all species have certain properties and behavioral

patterns associated with them. These properties are attributed to the elements of the

class representing that species as soon as they are identi�ed as belonging to that class.

These patterns can be represented by predicates like P (xj) for xj ∈ [Xi]. Relations

between di�erent species can be expressed by binary predicates like P (xi, yj) where

xi ∈ [Xi] and yj ∈ [Yj]. . Notice that similarity xi ∼ xj and distance ∂(xi, yj) already

de�ned are relations between objects xi and yj .
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2.1 Naive Logic

Survival depends on making valid inference for most of the time. To draw valid con-

clusions, information has to be processed through association and comparison. This

requires procedures resembling those of logic. We will try to show how such procedures

can be obtained intuitively. To start with, we need a notion of truth. Informally, what

is observed and remembered is true.

De�nition: TruthWhen the characteristics of objects match, we say that xi ∼ xj

is true. In other words the objects are similar.

De�nition: Negation is the failure of characteristics to match.

De�nition: For xj ∼ xi , xj ∈ [Xi] is true. That is to say, the object is identi�ed.

De�nition: Truth for Predicates For xj ∈ [Xi], P (xj) is true. The object has

the properties associated with its species.

De�nition: Negation for Predicates kP (zi)i.e. object zi does not have prop-

erty P .

2.1.1 Combining Information to Draw Valid Conclusions

Drawing the conclusion that when xj ∈ [Xi] is true, P (xj) is true and that it can not

be false is valid. Since the same behavioral pattern can be associated with di�erent

species, the conclusion that when yj ∈ [Xi] is false P (yj) can be true is equally valid.

Yet for another species zj ∈ [Xi] can be false and P (zj) can be false. This is exactly

what is meant when we use the implication operator xj ∈ [Xi] ⊃ P (xj) . Other logical

operators like ∨ and ∧ can be introduced and interpreted in the same way.
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The possibility that the same behavioral patterns can be expected from members of

di�erent species shows that predicates are in fact, equivalence classes of objects sharing

a particular property. Once an object is associated with the properties its species has,

objects of other species having the same property come to mind. Association works

both ways, from object to predicate and from predicate to other objects for which it

is true.

To formalize

Notation: A =⇒ B denotes association i.e. A brings B to mind.

xi ∈ [Xi] =⇒ P (xi)

P (xi) =⇒ P (yj)

P (yj) =⇒ yj /∈ [Xi] =⇒ yj ∈ [Xi] is false but P (yj) is true.

On the other hand yj /∈ [Xi] =⇒ zj /∈ [Xi] and P (zj) can be false.

Once these associations are made and stored in memory, they give rise to the

implication operator

xj ∈ [Xi] ⊃ P (xj) .

There are other ways in which association may occur.

Let cik(xi) denote the characteristic named k of the object xi. One might make the

association cik(xi) =⇒ cjl(yj).

Yet another way in which association might occur is the following:

cik(xi) =⇒ P (yj), the characteristic of an object might be the property of another.

Although the operator =⇒ resembles ⊃ they are not the same. In

P (xi) =⇒ P (yj), the truth of P (yj) is not necessarily based on the truth of P (xi).

For example, the following may happen:

kA =⇒ A.
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Let C be the set of characteristics and let P be the set of predicates.

De�nition: Association is a mapping from C ∪ P to C ∪ P .

That xi ∼ xj is an equivalence relation can be shown now that we have formulated

the implication relation.

xi ∼ xi

If xi ∼ xj then xj ∼ xi

If xi ∼ xj and xj ∼ xk then xi ∼ xk

When we say for xj ∈ [Xi], P (xj) is true, we are using the universal quanti�er

∀ implicitly. To introduce the existential quanti�er ∃ we note that all members of a

species are not completely alike. Variations within a species gives rise to the existential

quanti�er. As an example we can think of red parrots and blue parrots. Color in this

case is not a de�ning characteristic.

2.2 Motion and Space

In the same way, we can de�ne similarity for motion between objects. If xi → yj then

yj → xi. Moreover ∂(xi, yj) = ∂(yj, xi). If xi → yj and yj → zk then xi → zk. Clearly

what we have here is another equivalence relation. We can de�ne space as the union

of the equivalence relations constituted by motion from one object to another.

De�nition: Space Space is the union of the equivalence classes of the arrows

which represent the possibility of motion.

We are immediately led to the recognition that order relations exist in equivalence

classes. Imagine the following situation: object xi moves towards object xk. It can

pass through xj where j may take any value. Moving from xi to xk involves the choice

of a possible path. Such a choice will be dictated by the comparison of the distances
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involved.

xi → xj1 → xk is equivalent to xi → xj2 → xk

However the distances involved are not necessarily the same. This is where a

quantitative comparison is made and the quantitative di�erences between the elements

of an equivalence class play their part.

3 Order

While qualitative comparisons give us equivalence classes partitioning the set of ob-

jects, quantitative comparisons give us order relations.

Order relations are de�ned as relations having the following properties:

xi � xi

If xi � xj and xj � xk then xi � xk

If xi � xj and xj � xi then xi ≈ xj

where ≈ stands for equivalence. Strict ordering is denoted by xi ≺ xi.

Assumption: Truth for Ordering Cognitive units can compare sizes, distances

and realize relations like xi � xj , ∂(xi, yj) � ∂(xi, zj) , ∂(xi, yj) ≈ ∂(xi, zj) as true.

De�nition: Ordering Time The notions of before and after are important for

cognitive units. We will order time as follows:

t � τ which obviously means that τ is later than t.

Since distances can change in time, we will index them.

∂τ (xi, yj) � ∂t(xi, yj) means that for t � τ

the distance between xi and yj has decreased.
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3.1 Well ordering

A property of order relations that we are interested in is that of well ordering. A set

of objects X is well ordered if all non-empty subsets of X have a �rst element. That

is to say, ∀X ′ ⊆ X there exists xi such that ∀xj ∈ X ′ ⊆ X the following holds:

xi � xj ∈ X ′.

If a set is well ordered then it is totally ordered i.e. all the elements of the set are

comparable. In other words

∀xi, xj ∈ X

either xi � xj or xi � xj or xi ≈ xj .

If all the elements of X are not comparable i.e. if there exist elements xi and xj

such that none of the relations above hold then we have a partial order.

3.2 Ordering Predicates

Order relations are de�ned in so general a way that the implication operator can impose

an order on predicates.

A⊃A

If A⊃B and B⊃C then A⊃C.

If A⊃B and B⊃A then A and B are equivalent

which gives us a partial order since not all propositions imply one another.

Notice that the relation set-subset is an order relation.

If S ′ ⊂ S we can write S ′ ≺ S meaning that S contains more elements than S ′.

Each cognitive unit can be said to have its own ordering of predicates which can

be interpreted as its world view.
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The association operator =⇒ that we have de�ned does not impose an order since

if A =⇒ B and B =⇒ A

A and B are not necessarily equivalent. The association relation can best be mod-

eled as a communication relation in Markov chains.

4 Typical Scenario

To show how the setup we have introduced can describe animal behavior we propose

the following scenario.

Let [Xi] represent a species of predators and [Yj] that of prey. Object xi is perceived

by object yj . Object yj identi�es xi as a member of the predator species [Xi] . So

P (xi) is true. If the predator is moving towards the prey , xi will attack yj . In symbols

xi ∈ [Xi] ⊃ P (xi)

∂τ (xi, yj) � ∂t(xi, yj) for t � τ

P (xi) ∧ [∂τ (xi, yj) � ∂t(xi, yj)]⊃ P (xi, yj)

P (xi, yj) ⊃ R(yj) whereP (xi, yj) and R(yj) stand for xi attacking yj and yj running

away.

So xi ∈ [Xi] ∧ [∂τ (xi, yj)� ∂t(xi, yj)] ⊃ R(yj) .

It is interesting to note that the train of thought is ordered by the implication

operator. Qualitative and quantitative comparisons are combined to give a reaction.
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5 Numbers

In the introduction, we have claimed that quantitative comparisons seem to be at the

basis of our own mathematical ability. We have outlined a cognitive model of how

quantitative and qualitative comparisons are made and structured. To validate our

claim we have to show how the concept of number can arise naturally in the model

that we have proposed. In our setup we have modeled quantitative comparisons by

order relations. In mathematics the accepted way of de�ning natural numbers is using

the Peano axioms. So now our intention is to show that members of ordered sets

satisfy these axioms. Since the Peano axioms provide a de�nition of number which is

su�cient to construct most of applied mathematics, obtaining them from our setup

will validate our claim.

Peano Axioms

Every axiomatic system has to start with unde�ned concepts. In Peano's axiomatic

system, one, number and successor are the unde�ned concepts. The axioms are a list

of properties that these unde�ned concepts have.

One is denoted by 1 , a number by N , and a successor by S(N).

The set of axioms is as follows:

i) 1 is a number.

ii) Every number has a unique successor.

iii) There is no number whose successor is 1.

iv) Distinct numbers have distinct successors.

v) Let P be a property. If P (1) is true and if P (N) ⊃ P (S(N))

11



then P is true for all N .

The last axiom is the well-known induction property which is why we have shown

how the implication operator arises naturally through association.

In this system, numbers are abstract mathematical objects satisfying these axioms.

The familiar sequence 1, 2, 3, ... is a model for the axiomatic system.

The operation of addition is not part of the axioms. It is de�ned on numbers

already de�ned.

De�nition: Addition For numbers N and M

N + 1 = S(N)

N + S(M) = S(N +M)

Although the word successor immediately suggests order, in Peano's system num-

bers are ordered after they and the operation of addition are de�ned . In this system

number precedes order. However in the approach we propose, order precedes number.

6 Order Relations and Peano Axioms

To start with we have to de�ne a successor function for order relations.

Let X be a totally ordered set of distinct objects.

De�nition: Successor Function

S(xi) ≈ xj is the successor of xi if for xi, xj, xk ∈ X

xj � xi and (∀xk � xi) xj � xk.

The following properties of the successor function will lead us to the result that we

want to establish.

Lemma 1 The successor of xi is unique.
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Proof

Let xj and xl be two successors of xi .

S(xi) ≈ xj and S(xi) ≈ xl .

xj � xi and (∀xk � xi) xj � xk and

xl � xi and (∀xk � xi) xl � xk.

xj � xi so that xl � xj

On the other hand

xl � xi so that xj � xl proving that xj ≈ xl.

Q.E.D.

Lemma 2

Distinct objects have distinct successors.

Proof

Suppose the contrary.

S(xi) ≈ xj and S(xm) ≈ xj.

xj � xi and xj � xm.

Now (∀xk � xi) xj � xk and

(∀xk � xm) xj � xk .

We have a totally ordered set so that either xm � xi or xm � xi.

If xm � xj since xj � xm equivalence is proved.

If xm � xj then xj � xi which is impossible since xi � xj.

Q.E.D.

We can now prove a theorem.

Theorem

The elements of a well ordered set of objects satisfy Peano's axioms.
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Proof

Every object in the set will be called a number.

Distinct objects will have distinct numbers.

The �rst element of the well ordered set will be called the number 1.

Lemma 1 shows that the successor of each object is unique.

Lemma 2 shows that distinct objects have distinct successors.

There is no object whose successor is the �rst object since the �rst object is the

minimal element of the well ordered set.

The induction property is satis�ed since well ordered sets satisfy the trans�nite

induction property.

Q.E.D.

Essentially, numbers are names. What counts is the relation between these names.

We will express the relation as follows:

Each object is assigned a name N. Distinct objects have distinct names. The names

of objects will be ordered in the same way as the objects they represent. The successor

of N is the name of the object that is the successor of the object that N represents.

The relation between names is called addition and is de�ned as follows:

For names N and M

S(N) = N + 1

N + S(M) = S(N +M) .

This much is enough to give us counting and adding up the number of elements in

subsets of the ordered set.
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7 Children and Counting

There is a huge literature on how small children learn to count. In developed cultures

names for numbers exist and children start counting counting at around age two.

However despite the fact that they count in the correct order, they do not know the

exact values of the numbers that they have memorized.

"Although she uses the counting words correctly in the count routine, she evidently

interprets each word above one as simply meaning "more than one." With months of

counting experience, as well as other cognitive advances that are running in parallel,

children progress from understanding the meaning of "one" to understanding "two,"

and then "three"; this progression is highly systematic with no evidence of children

learning other numbers in the integer count list �rst, nor learning the meaning of

three before they learn the meaning of two (Wynn, 1990). After this slow, systematic,

stepwise progression, children take a leap forward.They form the induction that each

word in the counting routine gives the cardinal value of a set composed of a speci�c

number of individuals, that each word denotes a set with one more individual than the

previous word, and that the succession of cardinal values picked out by the number

words can be continued inde�nitely, with no upper bound." (Hauser and Spelke 2004).

It seems reasonable to formalize this process in our setup. Children memorize the

set of numbers in the correct order.

{one, two, three, four, five, ...}. Then they are faced with a set of objects {a, b, c, d, e, ...}

where the objects are completely alike.

First they learn to associate the number one with the set {a}.

{one} =⇒ {a} a set having a single element.
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Faced with {two} they interpret the number as more than one: {two} =⇒ {a, b, c, d, e, ...}

i.e. two � one since {a} ≺ {a, b, c, d, e, ...}.

Then they progress to understanding the meaning of {two}.

{two} =⇒ {a, b}.

Faced with {three} they interpret it as more than {two} i.e.

{three} =⇒ {a, b, c, d, e, ...} and three � two

since {a, b} ≺ {a, b, c, d, e, ...}.

When they realize that {three} =⇒ {a, b, c} they are ready to take the crucial step.

{a} ≺ {a, b} ≺ {a, b, c} so

{one ≺ two ≺ three} =⇒ {{a} ≺ {a, b} ≺ {a, b, c}}

taking the inductive step they have

{one ≺ two ≺ three ≺ ... ≺ N}=⇒{{a} ≺ {a, b} ≺ {a, b, c} ≺ ... ≺ {a, b, c, ..., N}}.

Using the successor function de�ned on subsets

S({a}) ≈ {a, b}

S({a, b}) ≈ {a, b, c}

S({a, b, c, ...,M}) ≈ {a, b, c, ..., N} .

Now

{one} =⇒ {a} the word one is associated with all single objects.

S(one) ≈ {two} =⇒ S({a}) ≈ {a, b} ≈ {a} ∪ {b} and

S(two) ≈ {three} =⇒ S({a, b}) ≈ {a, b, c} ≈ {a, b} ∪ {c}.

S(M) ≈ {N} =⇒ S({a, b, c, ...,M}) ≈ {a, b, c, ...,M,N} ≈ {a, b, c, ...,M} ∪ {N}.

In this context union ∪ should be interpreted as including "more and more" objects

in a given collection. The objects are completely alike. The word {one} is associated

with all single objects.
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Each set in the ordered sequence

{{a} ≺ {a, b} ≺ {a, b, c} ≺ ... ≺ {a, b, c, ..., N}}

includes "one" more object than the preceding set and the sets are

increasing one by one so that the numbers associated with them have to increase

one by one.

Including one more object to a collection gives us addition i.e.

S(M) =⇒ {a, b, c, ...,M} ∪ {N} and

S(M) ≈ N ≈M + 1 .

{a, b, c, ...,M} ∪ {a, b, c, ..., N} =⇒M +N hence

S(M) +N ≈ S(M +N).

This way of generating natural numbers is similar to Von Neumann's set-theoretic

de�nition of numbers. However the crucial di�erence is that in this approach order

precedes number whereas in Von Neumann's approach number precedes order.

8 Association as a Markov Chain

The preceding arguments have a deterministic �avor. In reality the processes in ques-

tion are stochastic. The association operator =⇒ can be modeled as a Markov process.

The stationary distribution of such a process would lead to a possible ordering of pred-

icates, giving a cognitive picture of the world for each cognitive unit.

To formalize let Pi and Pj be two predicates. Each predicate that comes to mind

can be considered as a state in a state space.

Let {Vn, n = 0, 1, 2, ...} be a stochastic process. The set of possible values for this

process is the set of nonnegative integers. If Vn = i , the process is said to be in state
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i at time n (Ross 1996). We will say that when Vn = i the cognitive unit has in mind

the predicate Pi .

We assume that Vn is a Markov process

i.e. p(Vn+1 = j|Vn = i, Vn−1in−1, ..., V0 = i0) = p((Vn+1 = j|Vn = i).

Let pij denote the transition probability p((Vn+1 = j|Vn = i) . At time n the

cognitive unit has Pi in mind which it associates with Pj i.e.

p((Vn+1 = j|Vn = i) = p(Pj|Pi) .

Let pnij = p(Vn+m = j|Vm = i) i.e. the n step transition probability of passing from

state i to state j. These probabilities can be computed using the Chapman-Kolmogorov

equations pn+mij =
∑

k p
n
ikp

m
kj . In our context, these probabilities will represent passing

from Pi to Pj in n steps.

State j is said to be accessible from state i if pnij > 0 . If both pnij > 0 and

pmji > 0, states i and j are said to communicate. In other words Pi =⇒ Pj and

Pj =⇒ Pi. Communication is an equivalence relation so that we have equivalence

classes of predicates which are associated with one another. In this way we can impose

a temporal partial order on predicates using the association operator.

If starting at state i the process returns to that same state with probability one, i

is called a recurrent state. States which communicate with i are also recurrent so that

recurrence is a class property. A Markov chain is irreducible if all states communicate

with one another.

The following result will be useful for our purposes: for an irreducible aperiodic

Markov chain if πj = limn→∞ pnij > 0 then all states are positive recurrent and {πj, j =

1, 2, ...} is the unique stationary distribution of the process i.e. the solution of the

equation
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πj =
∑

k πkpkj .

Putting pj =
πj∑
k πk

we have the unconditional probabilities that the system is in

state j i.e. pj = p(V = j) = p(Pj) (Ross 1996). Since this is the stationary distribution,

these unconditional probabilities are independent of time. They give us the proportion

of time that the cognitive unit has in mind the predicate Pj.

What we have here is an instrument that permits us to classify predicates. States

that communicate i.e. predicates that are associated with one another form equivalence

classes. With the passing of time associations settle at their steady state {p(Pj), j =

1, 2, ...} and we have a unique pattern of having in mind information expressed as

predicates. Each cognitive unit has its own pattern which largely characterizes the

functioning of the cognitive system.

Cognitive units can and do confuse association, implication and causality. In prin-

ciple Pi =⇒ Pj has nothing to do with the truth of the predicates Pi and Pj . Whether

the implication Pi ⊃ Pj following the association Pi =⇒ Pj will be valid i.e. true

depends on their truth values. Once valid implications are made, they will impose an

order on predicates which will characterize their world view.

9 Indications for a Prolog program

The following indications can be helpful to simulate the model we have proposed.

In the model, the basic concepts are equivalence relations and order relations. The

well known Animal Identi�cation game in Prolog is ideal for simulating what we have

called similarity and to form equivalence classes. The association xi ∈ [Xi] =⇒ P (xi)

can be made using the same game. Then yj /∈ [Xi] can be searched for which P (yj) is
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true. Finally �nding zj /∈ [Xi] for which P (zj) is false will give us the implication rule

xi ∈ [Xi] ⊃ P (xi).

To express order relations we can use the well known genealogy programs in every

Prolog tutorial. Replacing the terms for family members with "more" and "less" would

do the job.

The process through which children learn counting can be simulated in the following

way. We can de�ne the ordered sequences

{{a} ≺ {a, b} ≺ {a, b, c} ≺ ... ≺ {a, b, c, ..., N}} and

{one, two, three, ...}.

Make the �rst association {one} =⇒ {a}.

Then {two} is associated with "more" than {one} i.e. {one} ≺ {two}.

However {two} =⇒ {a, b.c, d, ...}

Checking the truth of this statement the program will give the result "false". Then

until the association {two} =⇒ {a, b} is made the result will be declared "false".

The same process will be repeated until the correct isomorphism between objects and

number words is obtained.

Then the successor function can be de�ned inductively using the union operator of

Prolog.

S({a}) ≈ {a, b} ≈ {a} ∪ {b}

S({a, b, c, ...,M} ≈ {a, b, c, ...,M} ∪ {N} ≈ {a, b, c, ..., N}.
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10 Conclusion

We have outlined a simple cognitive model of how qualitative and quantitative compar-

isons are made and structured. Qualitative comparisons give rise to naive logic through

association. Quantitative comparisons lead to order relations. We have shown the pos-

sibility of constructing natural numbers by proving that totally ordered sets satisfy the

Peano axioms. We have then shown how children learn counting through association.

Association is then modeled as a Markov process leading to a stationary distribution

which characterizes the mindset.
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